
1

Plugins and Workflow
Activities

Plugins and workflow activities are compiled as assemblies and run in the Global
Assembly Cache (GAC). Some of the most complex CRM development is found in the
.NET code associated with these two types of components. With CRM 2011, JScript
and REST services provide a great deal of additional functionality that was not read-
ily available in previous versions, such as creating and updating data. However, for
many process and business requirements, plugin and workflow activity assemblies
are still required.

This chapter outlines how to develop, register, and debug both types of
components and introduces key concepts to working with data available through
the CRM SDK.

Developing Plugins

To demonstrate the development of a plugin, this chapter looks at a specific
business case—the deactivation of the parent account of an opportunity, triggered
when the opportunity has been lost. This allows for discussion of the overall struc-
ture of a plugin, illustrated by retrieving a related entity from within a plugin, setting
the state on an entity, and sending an e-mail.

Basic Code Framework for Plugins

All plugins begin with the same basic framework of code, which performs some
context checking to ensure that the code fires only when expected. The basic code
framework is shown in Listing 1-1, along with the additional context checks that
ensure that it’s triggering only on the loss of an opportunity.

Listing 1-1. Basic Plugin Framework, Executing on Loss of an Opportunity

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Xrm.Sdk;

Chapter 1

Chapter 1 Plugins and Workflow Activities

2

using Microsoft.Xrm.Sdk.Query;
using Microsoft.Xrm.Sdk.Messages;
using System.Runtime.Serialization;
using Microsoft.Crm.Sdk.Messages;

namespace DemoPlugin
{
 public class Opportunity:IPlugin
 {
 public void Execute(IServiceProvider serviceProvider)
 {
 IPluginExecutionContext context =
 (IPluginExecutionContext)serviceProvider
.GetService(typeof(IPluginExecutionContext));
 if (context == null)
 {
 throw new ArgumentNullException("localContext");
 }
 IOrganizationServiceFactory serviceFactory =
(IOrganizationServiceFactory)serviceProvider
.GetService(typeof(IOrganizationServiceFactory));

 IOrganizationService service = serviceFactory
.CreateOrganizationService(context.InitiatingUserId);

 // specific code for a specific business case, you
will want to modify at this point for your own
 // business needs
 if (context.InputParameters.Contains("OpportunityClose")
 && context.InputParameters["OpportunityClose"] is Entity)
 {
 Entity EntityOpportunityClose = (Entity)context.Input
Parameters["OpportunityClose"];
 if (EntityOpportunityClose.LogicalName != "opportunityclose")
 {
 return;
 }
 if (context.MessageName == "Lose")
 {
 // core functionality goes here
 }
 }
 }
 }
}

Plugins and Workflow Activities Chapter 1

3

Core Functionality for Plugins

Once you have the basic framework in place, you can move on to the core func-
tionality. This plugin fires on the loss of an opportunity, which means only a small
number of all of the opportunity properties are available by default. The first thing
to do is query the opportunity record for additional properties that will be used in
the logic of this plugin.

Querying Data

Querying an entity is very common functionality. You should break out query-
ing into a separate function that can be called from a variety of locations. You may
decide that you want to break all your common “utility” functions out into a sepa-
rate class or assembly that can be referenced by any of your projects. Listing 1-2
shows the code for a generic method that can be used to query an entity by its
GUID and return all its attributes.

Listing 1-2. GetEntity Method Returns All Attributes of a Specific Record

private Entity GetEntity(Guid
entityid,IOrganizationService service,String entity)
{
 Entity resultEntity = null;
 RetrieveMultipleRequest getRequest = new
RetrieveMultipleRequest();
 QueryExpression qex = new QueryExpression(entity);
 qex.ColumnSet = new ColumnSet() { AllColumns = true };
 qex.Criteria.FilterOperator = LogicalOperator.And;
 qex.Criteria.AddCondition(new ConditionExpression(entity
+ "id", ConditionOperator.Equal, entityid));
 getRequest.Query = qex;
 RetrieveMultipleResponse returnValues =
(RetrieveMultipleResponse)service.Execute(getRequest);
 resultEntity = returnValues.EntityCollection
.Entities[0];
 return resultEntity;
}

There are many ways to perform queries. In this case, the retrieveMultiple
method is used, which will return an EntityCollection (array of zero to many
entity records). Because the GUID is used to do the lookup, it is guaranteed that only
a single record will ever be returned, so the first value in the array (Entities[0])
is forcibly returned.

Chapter 1 Plugins and Workflow Activities

4

Setting State

The next step in this plugin’s flow of logic is to set the state of the associated par-
ent account record to InActive. For most properties on an entity, you can set the
value through a single line of code (for example, setting the value of a string prop-
erty is a simple assignment line of code). But for setting state, things are substan-
tially more involved. In this case, you want to write another method that will let you
set the state on a variety of entities so that the code can be contained and reused.

Listing 1-3 shows a method that sets the state of an entity by passing in the
entity name and the GUID. In this case, the entity will always be set to InActive,
but additional parameters to this method could be added to make it dynamic, too.

Listing 1-3. Setting the State and Status of an Entity

private void SetEntityStatus(IOrganizationService
service, Guid recordGUID, string entityName)
{
 SetStateRequest setState = new SetStateRequest();
 setState.EntityMoniker = new EntityReference();
 setState.EntityMoniker.Id = recordGUID;
 setState.EntityMoniker.Name = entityName;
 setState.EntityMoniker.LogicalName = entityName;

 //Setting 'State' (0 – Active ; 1 – InActive)
 setState.State = new OptionSetValue();
 setState.State.Value = 1;

 //Setting 'Status' (1 – Active ; 2 – InActive)
 setState.Status = new OptionSetValue();
 setState.Status.Value = 2;
 SetStateResponse setStateResponse =
(SetStateResponse)service.Execute(setState);
}

Sending E-mail

CRM can send e-mail. This is done, as shown in Listing 1-4, with the following
actions:

1. The opportunity record is passed in, along with the service information
and the opportunity ID.

 2. A message body is assigned (this can be dynamic and can include HTML
for formatting). The message body will be the body of the e-mail.

Plugins and Workflow Activities Chapter 1

5

3. The To and From e-mail addresses are assigned by setting the entity
GUID for the system user and assigning them to an ActivityParty
object.

4. The regarding object is set to the opportunity (this allows the e-mail to
be linked to the opportunity record in CRM for tracking purposes).

5. Finally, the e-mail properties are set, and the e-mail is created and sent.

Listing 1-4. Creating an E-mail

public void CreateEmail(Entity opportunity,
IOrganizationService service,Guid oppId)
{
 string msg = "Dear Owner:

 Please review the
opportunity.";
 string recipient = opportunity.Attributes["new_
manager"].ToString();

 ActivityParty fromParty = new ActivityParty
 {
 PartyId = new EntityReference("systemuser",new
Guid("620FA4D5-1656-4DDF-946F-20E6B1F19447"))
 };

 ActivityParty toParty = new ActivityParty
 {
 PartyId = new EntityReference("systemuser", new
Guid(recipient))
 };

 EntityReference regarding = new
EntityReference("opportunity", oppId);

 Email email = new Email
 {
 To = new ActivityParty[] { toParty },
 From = new ActivityParty[] { fromParty },
 Subject = opportunity.Attributes["new_
titleanddescription"].ToString(),
 Description = msg,
 RegardingObjectId = regarding
 };

 service.Create(email);
}

Chapter 1 Plugins and Workflow Activities

6

Tying It Together

With all the methods defined, and the core plugin framework code in place, you
simply have to tie it together with the code shown in Listing 1-5. This code replaces
the // core functionality goes here comment in Listing 1-1.

Listing 1-5. Core Functionality of the Plugin: Tying It Together

if (context.MessageName == "Lose")
{
 Entity Opportunity = null;
 Opportunity = GetEntity(((Microsoft.Xrm.Sdk
.EntityReference)
 (EntityOpportunityClose.Attributes["opportunityid"]))
.Id, service,"opportunity");

 // if the opportunity record has a parent account
associated with it, continue the logic execution
 if(Opportunity.Contains("parentaccountid"))
 {
 parentAccount = GetEntity(((Microsoft.Xrm.Sdk
.EntityReference)
 (Opportunity.Attributes["parentaccountid"])).Id,
service, "account");

 SetEntityStatus(service, ((Microsoft.Xrm.Sdk
.EntityReference)
 (Opportunity.Attributes["parentaccountid"])).Id,
"account");

 CreateEmail(opportunity, service,
EntityOpportunityClose.Attributes["opportunityid"])).Id);
 }
}

Developing Workflow Activities

Workflow activity development is very similar to plugin development. Differences
include the class (which inherits from CodeActivity) and the way the context,
service, and service factory are created. The code in Listing 1-6 shows the frame-
work for a workflow. The comment // core functionality goes here is
where the custom code for each workflow activity you are creating begins.

Plugins and Workflow Activities Chapter 1

7

Listing 1-6. Workflow Activity

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Activities;
using Microsoft.Xrm.Sdk;
using Microsoft.Xrm.Sdk.Workflow;
using Microsoft.Xrm.Sdk.Query;
using Microsoft.Xrm.Sdk.Messages;
using Microsoft.Xrm.Sdk.Client;
using Microsoft.Xrm.Sdk.Discovery;
using System.Runtime.Serialization;
using Microsoft.Crm.Sdk.Messages;

namespace LeaseWorkflowActivity
{
 public class LeaseRecurringWorkflow: CodeActivity
 {
 protected override void Execute(CodeActivityContext
executionContext)
 {
 IWorkflowContext context = executionContext
.GetExtension<IWorkflowContext>();
 IOrganizationServiceFactory serviceFactory =
executionContext.GetExtension<IOrganizationServiceFactory>();

 IOrganizationService service = serviceFactory
.CreateOrganizationService(context.UserId);

 // core functionality goes here
 }
 }
}

Chapter 1 Plugins and Workflow Activities

8

 ■ Note CRM Online doesn’t provide a way to schedule workflows. If you want
to set up a recurring workflow (which is a common way to call workflow activi-
ties repeatedly), you need to configure your workflow as both an on demand
and a child workflow (see Figure 1-1). You then need to set the wait state and
duration, as shown in Figure 1-2. To initiate the workflow, you need to kick it off
manually (on demand). Once started, it will continue to call itself as indicated in
the schedule. Remember: CRM has a built-in process that ensures infinite loops
are terminated. This means for recurring workflows, you can’t schedule the work-
flow to occur more frequently than seven times in an hour—anything more will
cause the workflow to terminate.

Figure 1-1. Allowing for a recurring workflow in CRM Online

Figure 1-2. The Workflow Scheduler

Plugins and Workflow Activities Chapter 1

9

Plugin and Workflow Activity Registration

The Plugin Registration tool is critical component of plugins and workflow activ-
ity registration—yet it seems almost an afterthought. Over the years, the tool has
gone through several updates, but it exists as a separate application from CRM and
has a true “developer” feel about it. Though it looks and feels like something that
isn’t quite production ready, the tool’s functionality and purpose are absolutely
vital to the success of deploying and configuring your components.

Setting Up the Plugin Registration Tool

The registration tool (pluginregistration.exe) is located in the SDK\bin folder of
the CRM SDK, which you can download from www.microsoft.com/en-us/
download/details.aspx?id=24004. Once you run this application, you’re
asked to set several properties. Take the following steps to set up your connection:

1. Click Create New Connection.

2. In the Label property, give the connection an appropriate name (such as the
name of the environment you are connecting to).

3. In the Discovery URL property, set the value to what is specific to your
environmental settings. To get this value, click Developer Resources in
the Customization settings of your CRM instance and look at Service
Endpoints. You will find the URL value under Discovery Service, as shown in
Figure 1-3. Enter the value of what you find before the /XRMServices
folder (for example, in Figure 1-3, the value would be https://disco
.crm.dynamics.com).

http://www.microsoft.com/en-us/download/details.aspx?id=24004
http://www.microsoft.com/en-us/download/details.aspx?id=24004
https://disco.crm.dynamics.com/
https://disco.crm.dynamics.com/

Chapter 1 Plugins and Workflow Activities

10

4. Enter your credentials in the User Name field (you will be prompted for a
password after you click the Connect button).

Once you have successfully connected to your environment, a new connection
will appear under Connections in your Plugin Registration tool. When you have con-
nected to this new connection, you will see all the registered plugins and custom
workflow activities listed in the window on the right, as shown in Figure 1-4.

Figure 1-4. Viewing registered components

Figure 1-3. Discovery Service URL in Developer Resources

Registering an Assembly

To register a plugin or workflow activity, click the Register option on the toolbar
and select Register New Assembly (shown in Figure 1-5). The Register New Plugin
screen that pops up is used for plugin and for workflow activity registration. Browse

Plugins and Workflow Activities Chapter 1

11

Figure 1-5. Register New Assembly

to your DLL (which may contain one or more plugins and activities) and click Load
Assembly. Doing so lets you select which components to register and where to
register them to.

Next, set the Isolation Mode property to Sandbox. (In CRM Online, this value is
always set to Sandbox, but in CRM on-premise you can chose between Sandbox
and None, which allows for some level of control over trust level execution.) Set the
Location where the Assembly should be stored to Database. Take note that when
deploying to the database, you must also copy the DLL and PDB files to the \Server\
bin\assembly folder of your CRM installation to be able to debug. (This is noted in
the Database setting area, shown in Figure 1-6.)

Figure 1-6. Sandbox and Database settings when registering plugin

 ■ Note When a workflow activity has been registered, it’s marked with (Work-
flow Activity). Nothing further needs to be done once the assembly has been
loaded (no steps need to be associated with it). See Figure 1-7.

Chapter 1 Plugins and Workflow Activities

12

Registering a Step

Now that the assembly has been registered, next you must configure the set-
tings for when it will execute by setting up one or more steps. For this example,
take the opportunity plugin outlined earlier in this chapter. The business case for
this plugin is that when an opportunity is lost, the associated account record will
be deactivated. For the registration configuration, that means you have to set up a
new step that triggers on the loss of an opportunity. Figure 1-8 shows how to con-
figure the step for this scenario.

Figure 1-8. Configuring a step

Figure 1-7. A registered workflow activity

Plugins and Workflow Activities Chapter 1

13

Here are some of the key properties that are set here:

1. Message: This is the eventoccurring that will trigger the plugin to fire. There
are dozens of potential events—or messages—that can be subscribed to.
Press a single letter, and all the available messages starting with that letter
are shown. In this case, when you press L, you see that Lose is one of three
options.

2. Primary Entity: This is the name of the CRM entity that you will be registering
the step to fire in conjunction with. All of the standard and custom entities
within your environment will be listed here. In this case, type opportunity.

3. Event Handler and Name: These should default, but make sure they’re set to
appropriate values for your step.

4. Run in User’s Context: This property is important. It determines the per-
missions that the plugin will fire under. If you want a plugin to execute
exactly the same, regardless of which user is performing an action, set this
to an account that has administrative privileges (such as CRM Admin). If you
want this to be restricted to security settings that the user has defined, set it
to Calling User.

5. Eventing Pipeline Stage of Execution: This setting will depend on what message
you’re setting the step to trigger on and when you want your plugin to fire.
The loss of an opportunity should fire after the entity has been updated, so
set this to Post-operation. Alternatively, you may want to set up a step that
triggers on the creation of a new opportunity, and you need the plugin to
fire before the opportunity is created. In that case, you would select Pre-
validation.

6. Execution Mode: You can set this to Synchronous or Asynchronous. If you
need to ensure that the plugin executes in full before the user can do
anything else in CRM, set it to Synchronous.

 ■ Note Registering a workflow activity doesn’t require the additional step of
registering a step. A workflow activity will execute from a step within a defined
process in the CRM user interface, as shown in Figure 1-9. To access this, create
a new workflow (process) from the Process menu option in Settings in the CRM
user interface.

Chapter 1 Plugins and Workflow Activities

14

Debugging Plugins

After a plugin has been registered properly in a development setting, gener-
ally you want to work through debugging. Debugging a CRM on-premise solution
is similar to debugging any ASP.NET application. And it requires fewer steps than
debugging CRM Online. Debugging Online can be more time-consuming and
therefore requires more thought and care in development. The following sections
outline how to debug in both environments.

Debugging CRM On-premise Solutions

When debugging on-premise, you can use Visual Studio to attach to a process
and step through the code. The following steps are all that’s required:

 1. Make sure that the DLL and PDB that are built with your Visual Studio
solution are current, and that the current builds of both are in the server/bin
folder of your on-premise CRM installation folder. You need to register the
plugins using the Plugin Registration tool prior to taking any further steps.

 2. Click the Debug menu option in Visual Studio and select Attach to Process
(see Figure 1-10). You want to attach to all instances of w3wp.exe listed in
the Available Processes panel.

Figure 1-9. Workflow activity will be available in the Add Step window

 ■ Note When debugging workflow activities, you need to attach to the
CrmAsyncService process in the Available Processes panel (w3wp.exe is the
process to attach to for plugin debugging).

Plugins and Workflow Activities Chapter 1

15

Debugging CRM Online Plugins

CRM Online can’t be debugged in the same way as CRM on-premise because
there is no way to attach the Visual Studio environment directly to CRM Online.
Instead, you need to take several steps to allow for debugging. This section describes
those steps.

Installing the Profiler

The first step to debugging in the CRM Online environment is to install the pro-
filer. You do that by opening the Plugin Registration tool and connecting to the
instance that has the plugin you want to debug. Click the Install Profiler button on
the menu bar (see Figure 1-11).

Figure 1-10. Attach to Process

Note ■ When debugging on a remote server, you need to use the Visual
Studio Remote Debugger and configure Visual Studio to connect to the target
machine.

Chapter 1 Plugins and Workflow Activities

16

Profiling a Step

With the profiler installed, the next step is to right-click the step within a plugin
that you want to debug and select the Start Profiling option. In the Profiler Settings
(shown in Figure 1-12), you can set various properties. You can generally use the
default settings here and simply click OK. Once a step has been configured with
the profiler, it will have a note next to it in the Plugin Registration tool that says
(Profiled) (see Figure 1-13). You can add profiling to as many steps as you need to
successfully debug your code.

Figure 1-11. Installing the profiler for debugging

Note ■ To uninstall the profiler, make sure you click the Uninstall Profiler but-
ton in the Plugin Registration tool. If you simply unregister it (as you would any-
thing else registered), you’ll leave a lot of pieces installed and will have some
additional cleanup work to do.

Plugins and Workflow Activities Chapter 1

17

Triggering the Profiler and Saving the Log File

Now that the step is successfully profiled, you need to trigger the code behind
the step to execute. Go into the CRM Online front end and force the action to occur
that will trigger the step (for example, if the step is on the loss of an opportunity,
go into an opportunity and click Lost Opportunity). When the code is hit, an error
similar to that shown in Figure 1-14 will pop up. Click the Download Log File button
and save it.

Figure 1-12. Profiler Settings on Step

Figure 1-13. A step with profiler attached (Profiled)

Chapter 1 Plugins and Workflow Activities

18

Debugging, Attaching, and Breakpoints

Back in the Plugin Registration tool, click the Debug button (on the menu, next
to the Uninstall Profiler button). The Debug Existing Plug-in dialogue box shown
in Figure 1-15 opens. Set the Profile Location property to the local path where you
downloaded the log file (Figure 1-14). The Assembly Location property should be
the local path where the assembly DLL and PDB files are located. Make sure that this
is the same build that the Visual Studio code you’ll be debugging is associated with.

Figure 1-14. Error indicating that the profiler was successfully triggered

Figure 1-15. Debug Existing Plug-in dialog box

Open your plugin code in Visual Studio and set breakpoints where appropriate.
You should start by putting a breakpoint on the first piece of code that will execute
when triggered, so that you can ensure all your code is firing as expected.

Plugins and Workflow Activities Chapter 1

19

Once your breakpoints are set, click the Debug option on the menu bar in Visual
Studio and select Attach to Process. In the Available Processes panel, highlight the
pluginregistration.exe process and click the Attach button.

Finally, once everything is attached in Visual Studio, click the Start Execution
button in the Debug Existing Plug-in tool (Figure 1-16). You will now be able to step
through your code.

Figure 1-16. Start Execution

Conclusion

You’ve looked at how to develop and register plugins and workflow activities
and have worked through some of the critical aspects to querying and modify-
ing data. You’ve also stepped through debugging plugins in on-premise and CRM
Online environments. Plugins and workflow activities will be some of the most
labor-intensive activities that you do in CRM. But they can be optimized and made
maintainable through intelligent planning and coding. Developing these compo-
nents introduces you to interacting with CRM through the SDK, which is essential
to building external applications that can pull data from and write records to CRM.
Those topics are covered in the next chapter.

